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ABSTRACT

Recently, multimodal large language models (multimodal LLMs) have been ap-
plied to a wide range of video understanding tasks, particularly for Video Ques-
tion Answering (VideoQA). However, existing multimodal LLMs suffer from
the following challenge: the classic end-to-end training strategies of multimodal
LLMs for VideoQA tasks are black-box, thus lacking interpretability as they can
neither present a reasoning path nor indicate where the answer is derived from
the video. To tackle this challenge, we propose MSR-ViR (Modularized Self-
Reflected Video Reasoner), a self-reflected framework that introduces a Mod-
ularized Spatial-Temporal Grounding (MoST-Grounding) module to multimodal
LLMs for VideoQA tasks. MoST-Grounding utilizes a question parser LLM to
generate execution policies, which serve as a reasoning path from questions to
answers providing interpretability for our VideoQA framework. Based on the
execution policies, MoST-Grounding invokes various small modules to localize
temporal segments and spatial regions in videos which provide multimodal LLMs
with most relevant visual information, while presenting visual evidence of our fi-
nal answers. To avoid the question parser LLM generating unreasonable policies,
we further propose a reinforcement learning-based Alternate Self-reflection train-
ing strategy to optimize the Multimodal LLM and the question parser LLM. Ex-
periments on VideoQA datasets (NExT-QA and STAR) and grounded VideoQA
dataset (NExT-GQA) demonstrate that our method significantly improves video
understanding capabilities of multimodal LLMs, while providing interpretable
reasoning paths together with temporal and spatial localization evidence within
the video.

1 INTRODUCTION

Video Question Answering (VideoQA) is a representative task in video understanding, aiming to
answer questions based on the content of a given video. Leveraging their rich external knowledge
and strong generalization capabilities, multimodal large language models (multimodal LLMs) have
emerged as powerful tools for tackling video understanding tasks such as VideoQA, video caption-
ing and so on. Most multimodal LLMs encode frames from videos with visual encoders and utilize
adapters to align the visual information with the textual query, allowing models to understand in-
formation in the video. However, these models face the following challenge in VideoQA tasks: the
conventional end-to-end training approaches for multimodal LLMs operate as black-box systems,
which inherently suffer from a lack of interpretability. Falling short in terms of transparency, they
are unable to unveil the reasoning process or pinpoint the specific segments of the video from which
the answers are derived.

To tackle this challenge, we propose the Modularized Self-Reflected Video Reasoner (MSR-ViR)
framework, including a Modularized Spatial-Temporal Grounding (MoST-Grounding) module,
together with a reinforcement learning-based Alternate Self-reflection Training strategy to train
a multimodal LLM on VideoQA datasets, as shown in Figure 1(c). MoST-Grounding module first
localizes the most relevant temporal segments and spatial regions in a video by utilizing various
small modules according to the execution policy, which is generated by a question parser LLM. Then
the spatial-temporal grounding results are encoded by a visual encoder and aligned with the textual
inputs through a visual adapter, after which a Multimodal LLM utilizes the aligned information to
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Figure 1: Comparison between existing works and our method.

generate the answer. The execution policy provides a clear reasoning path from the question to the
answer, providing interpretability for our framework, while the spatial-temporal grounding results
presenting visual evidence for our answers. Considering the question parser LLM that has not been
supervised trained on relevant datasets may produce unreasonable or even incorrect policies, we
further propose the Alternate Self-reflection Training Strategy. On one hand, the multimodal LLM
undergoes Supervised Finetuning (SFT) based on the execution results of the policies generated by
the question parser LLM to better understand the video content; on the other hand, the predicted
result of the multimodal LLM also serves as a feedback to train the question parser LLM, where
we adopt reinforcement learning due to the non-differentiable process when constructing the MoST-
Grounding module. The training of the two LLMs alternates in a cyclical manner, and both LLMs
are optimized during this alternate self-reflected training process.

We trained our multimodal LLM with both classic methods and our proposed approach on the train-
ing sets of commonly used VideoQA datasets, NExT-QA(Xiao et al., 2021) and STAR(Wu et al.,
2021), and evaluated them on their corresponding test set. The results show that our approach out-
performs classic training methods as well as other grounding-based VideoQA methods. We also
conducted evaluations on NExT-GQA(Xiao et al., 2024), a widely-used grounding-based VideoQA
dataset, and the results demonstrate that our method not only improves the performance of VideoQA
but also more accurately localizes the temporal segments relevant to the questions compared to ex-
isting grounding-based methods and modular methods.

Our contributions can be summarized as follows:

• We propose MSR-ViR, a self-reflected VideoQA framework with multimodal LLMs which
utilizes a MoST-Grounding module to locate the most relevant spatial-temporal informa-
tion in the video, together with parser LLM to generate modular interpretable execution
policies.

• We propose a reinforcement learning-based Alternate Self-reflection Training Strategy
to train the multi-modal LLM and parser LLM jointly.

• We conducted experiments on commonly used VideoQA datasets to demonstrate that our
method outperforms classic training methods and other grounding-based methods. Addi-
tionally, experiments on the grounded VideoQA dataset show that our approach could lo-
calize the temporal segments accurately, providing visually-grounded evidence of the final
answer.

2 RELATED WORKS

Video Understanding with multimodal LLMs. With the development of multimodal LLMs, they
have been utilized for video understanding tasks(Zhang et al., 2023b; Lin et al., 2023a; Maaz et al.,
2023; Li et al., 2023b; 2024b; Zhang et al., 2024; Song et al., 2024; Yao et al., 2024; Li et al.,
2024a). Most multimodal LLMs for videos are built on open-source LLMs such as LLaMA(Touvron
et al., 2023) and Vicuna(Chiang et al., 2023), and adapters are utilized to align encoded visual
information with the textual space. Representative works like Video-LLaMA(Zhang et al., 2023b)
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utilizes the Vision Transformer (ViT) from EVA-CLIP(Sun et al., 2023) and an Image Q-Former(Li
et al., 2023a) as the video frame encoder, after which a Video Q-Former is employed to encode
temporal information in the video, with a linear layer projecting this visual information into the
textual space. Some other works have explored the temporal perception capabilities of multimodal
LLMs(Huang et al., 2024; Ren et al., 2024; Wang et al., 2024c; Qian et al.; Li et al., 2024c) to
enhance their understanding of temporal information in videos. For instance, VTimeLLM(Huang
et al., 2024) introduces a boundary perception training process on multi-event datasets, improving
the performance of multimodal LLMs on tasks such as video grounding and dense video captioning.
However, classic end-to-end training methods of multimodal LLMs remain black boxes, resulting
in a lack of interpretability as they are unable to provide inference process as well as grounded
evidence of the answer in the video.

Grounded VideoQA with LLMs. Grounded VideoQA aims to answer the question and at the same
time indicates where in the video the answer originates. Existing grounding-based(retrieval-based)
VideoQA methods(Wang et al., 2024d; Xiao et al., 2024; Qian et al., 2024; Yu et al., 2024; Wang
et al., 2024a) attempt to localize time segments relevant to the question within the video in the
first place and then sample frames from the identified segments to serve as inputs to multimodal
LLMs, as is shown in Figure 1(a). For example, LSTP(Wang et al., 2024d) leverages optical flow
of videos to efficiently extract relevant video frames as visual input of multimodal LLM to achieve
long-form video-text understanding. Grounded-based methods address the issue of providing visual
evidence in videos to some extent, but still they lack interpretability as they typically rely on black-
box models to perform temporal localization without a clear reasoning path, especially for questions
with complicated structures.

Modular VideoQA with LLMs. Modular methods(Min et al., 2024; Zhang et al., 2023a; Surı́s
et al., 2023; Wang et al., 2024b;e) utilize various smaller models according to execution policies
generated by certain LLM to handle sub-tasks derived from the original complex question, and an-
other LLM integrates the outputs of these smaller models to produce the final answer, as shown in
Figure 1(b). MoReVQA(Min et al., 2024) utilizes multiple PaLM-2(Anil et al., 2023) LLMs in a
multi-stage modular reasoning process, where the reasoning results and video frame captions ob-
tained from an image captioner are provided to another PaLM-2 model to derive the final answer.
ViperGPT(Surı́s et al., 2023) uses a code-finetuned LLM as a python program generator to generate
programs that invokes various tools and apis provided in prompts. While this approach enhances
interpretability, the unimodal LLMs used can only receive video information in the form of captions
generated from original video frames, potentially overlooking details in individual frames and miss-
ing important temporal context between frames. Additionally, the lack of self-reflection may cause
the modular network to execute according to unreasonable policies generated by LLMs, thereby
affecting the accuracy of question answering.

3 METHOD

In this section, we describe our proposed framework MSR-ViR(Modularized Self- Reflected Video
Reasoner), a modularized videoQA framework with alternate self-reflection training strategy. Fig-
ure 2 demonstrates the overall framework, together with an example for illustration. We will first
introduce the question parser which generates modularization policies in Section 3.1, and then in-
troduce our MoST-Grounding module designed for temporally and spatially grounding visual clues
according to the generated policy in Section 3.2. In Section 3.3, we will present how to processes
various information from both MoST-Grounding module and naive inputs(the video and the ques-
tion) based on a multimodal LLM. Finally, our proposed Alternate Self-reflection Training Strategy
is introduced in Section 3.4.

3.1 QUESTION PARSER

Many video language questions actually involve a ”multi-step” reasoning process rather than the
end-to-end ”one-step” processing. As the example shown in Figure 2, when asked ”Why does the
man have to squat down after the car approaches?”, we first need to locate the relevant temporal
segment ”after the car approaches”. Next, we must identify the man who is ”squatting down”, and
finally determine the reason to answer the question. Similarly, our MSR-ViR framework mirrors
the above ”multi-step” reasoning process how humans tackle VideoQA tasks: when facing a video
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Figure 2: Framework of MSR-ViR. The left part (a) shows Alternate Self-reflection Training Strat-
egy, including (i) Multimodal LLM Supervised Finetuning and (ii) Question Parser Reinforcement
Learning. The right part (b) demonstrates forward propagation details of MSR-ViR during MLLM
supervised fine-tuning.

together with a complex question, we first utilize a Question Parser to decompose the question into
several sub-questions, allowing us to identify the relevant video segments and regions, together with
a tree-structured reasoning process, to explicitly help answer the question.

Given a question q, our question parser Q aims to generate the policy p = Q(q), which serves as
the execution plan for the subsequent MoST-Grounding module (illustrated in Sec. 3.2) to invoke
various small modules for temporal and spatial localization. Considering the diversity of question
content and structure, as well as the limited training data for question policies, we utilize a large lan-
guage model as the question parser and take advantage of its in-context learning capabilities (Brown
et al., 2020). As shown in Figure 3, we carefully design the prompt and stimulate question parser
to generate policies in the uniform JSON format, organizing and chaining the small modules in a
specific structure. The JSON structure allows MoST-Grounding module to recursively call each
module, ultimately generating the spatial-temporal grounding results. The complete prompt for
question parser is presented in appendix A.1.

3.2 MODULARIZED SPATIAL-TEMPORAL GROUNDING MODULE

MoST-Grounding module is the core component of our framework, recursively invoking various
small modules according to the modular policy generated by the question parser to achieve temporal
and spatial localization for complex questions. Our MoST-Grounding module consists of two parts:
temporal localizerFt and spatial localizerFs, each containing several small modules for temporal
and spatial localization, respectively.

Given a concept ct (”car approaching”, for example) and a video v = {v1, v2, . . . , vT } containing T
frames, temporal localizer aims to generate the most relevant segments vs = {vi, . . . , vj} from the
video v, where 1 ≤ i ≤ j ≤ T . Later the output of the temporal localizer, namely video segments
vs, along with concepts cs are processed to the spatial localizer, generating most relevant visual
bounding box bvs within video segments vs. Formally, MoST-Grounding moduleM is written as
follows:

M(v, ct, cs) = Fs

(
Ft(v, ct), cs

)
, (1)
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Figure 3: Prompt for question parser LLM with an example policy.

To address complex semantic scenarios, both the temporal localizer and spatial localizer consist of
several types of small modules that can be dynamically assembled according to the policy. To be
specific, there are 7 types of small modules in our MoST-Grounding module, 4 of which belong to
temporal localizer and the other 3 belong to spatial localizer. Temporal localizer deals with tempo-
ral information provided in the question. As the core module of temporal localizer, DetectAct
module temporally localizes a simple action described by a short query(”car approaching”, for ex-
ample) in the video. In this module we utilize UniVTG(Lin et al., 2023b), a unified video temporal
grounding framework with zero-shot grounding ability over diverse action queries and fast infer-
ence speed. Spatial localizer on the other hand perceives spatial relationships within the video, with
a LocateObj module localizing an object described by a short query(”man wearing cap”, for ex-
ample) in a video frame. In this module we take advantages of YOLO-World(Cheng et al., 2024), an
open-vocabulary object detection framework that achieves real-time detection. Details about other
modules are presented in appendix A.2.

In our execution policies, both temporal localizer and spatial localizer will dynamically assemble
corresponding modules {mt

i} and {ms
i}, respectively. With the policy p generated by question

parser, Ft and Fs in Eq. 1 would be instantiated as follows:

Ft|p(·) = I
(
{mt

i}, p
)
(·),Fs|p(·) = I

(
{ms

i}, p
)
(·), (2)

After instantiating with the policy, the modules within the temporal localizer are called first to locate
and extract the temporal-grounded frames from the video. Subsequently, the modules within the spa-
tial localizer are invoked to generate the corresponding spatial-grounded frame for each temporal-
grounded frame. In this modular manner, MoST-Grounding extracts several temporally and spatially
localized video frames from the video, which will serve as visual input to our multimodal LLM.

3.3 MULTIMODAL LLM ANSWERER

After MoST-Grounding localizes the temporal segments and spatial regions relevant to the question,
a multimodal LLM is needed to understand the textual and visual information in order to answer the
question. Formally, the answer of a question q given the video v can be written as follows:

ŷ(q, v) = F
(
q, vs, bvs

)
, (3)

where vs and bvs represent the video segments and bounding box generated from MoST-Grounding
module, and F(. . . ) denotes the forward propagation of multimodal LLM. To better enhance the
video understanding ability of the multimodal LLM, we extend the input of the multimodal LLM in
Eq. 3 with the following two strategies. Firstly, we provide an additional global representation of
the video to the multimodal LLM. This is necessary because the MoST-Grounding module may not
always accurately localize the segments relevant to the question, and the multimodal LLM might
overlook essential information if it relies solely on the grounding results. Specifically, we sample
several frames from the video at regular intervals and perform average pooling on the encoded video
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frames along the temporal dimension to create a compressed representation of the global video,
which is then input alongside the grounding results. Secondly, in addition to the original question
and the aforementioned visual information, we provide the multimodal LLM with a guiding prompt
that explains the specific meanings of various visual input components. With these two designs,
Eq. 3 would be modified with:

ŷ(q, v) = F
(
Pt(q, vs, bvs , gv)

)
, (4)

where Pt(. . . ) represents the guiding prompt and gv denotes the global video representation. Spe-
cific input format of the multimodal LLM is presented in appendix A.3.

With the ground-truth of question q being y, the supervised finetuning loss of the multimodal LLM
is defined as a cross entropy loss LCE:

LCE(ŷ(q, v), y) = −
∑

(v,q,y)∈D

y log(ŷ(q, v)) (5)

where y is the target answer, D is the dataset. By optimizing the loss function in Eq. 5, the mul-
timodal LLM undergoes supervised finetuning on VideoQA datasets, learning to answer questions
based on all the provided information.

3.4 ALTERNATE SELF-REFLECTION TRAINING STRATEGY

As discussed in Section 3.1, we can teach the question parser to generate modularization policies
from complex questions by providing examples in the prompt. However, relying solely on in-context
learning does not ensure the quality of the policies. To address this issue, we propose the Alternate
Self-Reflection Training Strategy, which enables the question parser to improve the quality of its
policies through reinforcement learning.

We assume that for a given question, provided that all our modules remain unchanged, a reason-
able modular policy is more likely to accurately localize the correct temporal segments and spatial
regions. Consequently, the loss computed by the multimodal LLM is likely to be smaller. In con-
trast, an unreasonable policy that leads to incorrect localization will result in an increase in this
loss. Therefore, we provide feedback to the question parser LLM using the loss noticed during the
training process of the multimodal LLM, thereby guiding it through reinforcement learning training.
We utilize Direct Preference Optimization(DPO)(Rafailov et al., 2024), a method for Reinforce-
ment Learning from Human Feedback (RLHF), to train the question parser LLM to generate more
reasonable policies. Different from previous RLHF methods, DPO directly optimizes a language
model without explicit rewarding models, making the training process straight-forward and stable.
Specifically in DPO, the policy objective is formulated as:

LDPO(πθ;πref) = −E(q,pw,pl)∼D

[
log σ

(
β log

πθ(pw | q)
πref(pw | q)

− β log
πθ(pl | q)
πref(pl | q)

)]
(6)

where in our case, pw denotes the positive policy, pl denotes the negative policy and q is the input
question. πθ is our question parser LLM to be trained, while πref is a reference model initialized
with our question parser LLM but remain frozen. σ is the sigmoid function, and β is a controlling
parameter. Through DPO training, the probability of generating positive policies increases, while
the probability of generating negative policies decreases. In other words, the question parser LLM
learns to generate more reasonable policies.

We prompt the question parser LLM to view the same question from multiple perspectives, gen-
erating different modular policies. The MoST-Grounding module executes each policy, producing
their respective grounding results. The multimodal LLM then computes the corresponding losses.
We classify the policy with the smaller loss as positive and the one with the larger loss as negative,
training the question parser LLM according to Eq. 6.

Our training strategy alternates between SFT of the multimodal LLM and reinforcement learning
for the question parser LLM, optimizing with the loss functions in Eq. 5 and Eq. 6, respectively.
While training one large model, the other model’s parameters remain frozen. During this process,
the multimodal LLM periodically pauses to adapt based on the modular policies from the question
parser LLM. After a set training period, the question parser LLM utilizes these refined policies to
further train the multimodal LLM, allowing both models to optimize continuously. See appendix
A.4 for detailed training process.
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4 EXPERIMENTS

In this section, we introduce our experiments in the following four parts: we first introduce the basic
setups of our experiments, including datasets, baselines and our implementation details. Next, we
introduce our experiments on NExT-QA(Xiao et al., 2021) and STAR(Wu et al., 2021) datasets to
show that our MSR-ViR framework enhances the performance of Multimodal LLM on VideoQA
tasks. Then, we present our experiments on NExT-GQA(Xiao et al., 2024) dataset to demonstrate
that MSR-ViR grounds the temporal segments relevant to the questions more accurately than ex-
isting grounding-based methods and modular methods. Finally, we present the ablation study and
qualitative analysis.

4.1 EXPERIMENTS SETUPS

Datasets. We conducted our experiments on two VideoQA datasets: NExT-QA(Xiao et al., 2021)
and STAR(Wu et al., 2021), together with a grounded VideoQA datasets NExT-GQA(Xiao et al.,
2024). NExT-QA is a multi-choice VideoQA dataset focused on temporal actions including three
types of questions: Temporal, Causal and Descriptive. STAR is a multi-choice VideoQA dataset
for situated reasoning in real-world videos that contains four types of questions: Interaction, Se-
quence, Prediction and Feasibility. For STAR, we created a subset (STAR-sub) with Interaction
and Sequence questions (82.5% of STAR), excluding Prediction and Feasibility types as they lack
temporal and spatial grounding in videos, making them unsuitable for our framework. NExT-GQA is
derived from NExT-QA, retaining Temporal and Causal questions but removes Descriptive ones,
providing ground-truth temporal clips for validation and test sets to evaluate temporal grounding
accuracy.

Baselines. On NExT-QA and STAR, our baselines include vision-language models AIO(Wang et al.,
2023), ATP(Buch et al., 2022), VGT(Xiao et al., 2022), MIST(Gao et al., 2023), VFC(Momeni et al.,
2023), CoVGT(Xiao et al., 2023), HiTeA(Ye et al., 2023), InternVideo(Wang et al., 2022), multi-
modal LLMs BLIP2(Li et al., 2023a), InstructBLIP(Dai et al., 2023) and grounding-based multi-
modal LLMs LSTP(Wang et al., 2024d), SeViLa(Yu et al., 2024), GCG(Wang et al., 2024a). As
the direct baseline of our framework, we train Qwen-VL(Bai et al., 2023) and Llava-Next(Zhang
et al., 2024) by uniformly sampling frames from videos. On NExT-GQA dataset, our baselines in-
clude vision-language models VGT, VIOLETv2(Fu et al., 2023), Temp[CLIP](Radford et al., 2021),
FrozenBiLM(Yang et al., 2022)(which achieve grounded VideoQA with the method in Xiao et al.
(2024)), grounding-based method LSTP, SeViLa, LangRepo(Kahatapitiya et al., 2024) and modular
method LLoVi(Zhang et al., 2023a), MoReVQA(Min et al., 2024). We present zero-shot results for
LangRepo, LLoVi and MoReVQA, while conducting weakly-supervised finetuning on NExT-GQA
training set for other baselines.

Implementations. We implement our method based on SWIFT framework(Zhao et al., 2024). We
utilize a large language model, Qwen2-7B(Yang et al., 2024) as the backbone for our question
parser, and we utilize Qwen-VL(Bai et al., 2023) and Llava-Next(Zhang et al., 2024) as the back-
bone for our multimodal LLM, denoted as MSR-ViRQ and MSR-ViRL respectively. Following the
classic training strategy, we uniformly sample 4 frames from videos for Qwen-VL and 8 frames for
Llava-Next to implement our direct baseline in Table 1. For MSR-ViRQ, we sample 2 frames from
temporal grounding results, and 2 corresponding spatial-grounded frames, while for MSR-ViRL we
sample 8 frames from temporal grounding results, 8 spatial-grounded frames accordingly. We uti-
lize LoRA(Hu et al.) during supervised finetuning of our Multimodal LLM. As for our Alternate
Self-reflection Training Strategy, the period for alternating training between two LLMs is 200 steps,
with the gradient accumulation step set to 16. We conduct 5 epochs of SFT on every training set
for Qwen-VL, Llava-Next and our MSR-ViR framework, selecting the best model according to the
results on validation set.

4.2 EXPERIMENTS ON VIDEOQA

We compare our MSR-ViR framework with existing vision-language models, multimodal LLMs and
grounding-based methods on NExT-QA and STAR-sub. As shown in Table 1, MSR-ViRL achieves
best results on the overall NExT-QA and STAR-sub dataset together with most subsets formed by
different types of questions. Particularly, MSR-ViRL surpasses LSTP and SeviLa, which also utilize
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Table 1: Experiments on NExT-QA and STAR-sub. All models are finetuned on the corresponding
training set.The first part contains small vision-language models, and in the second part models or
methods are based on multimodal LLMs. Qwen-VL and Llava-Next are our direct baselines, MSR-
ViRQ is our framework based on Qwen-VL and MSR-ViRL is our framework based on Llava-Next.
Bold number denotes the best result.

Method NExT-QA STAR-sub
Temporal Causal Descriptive Avg. Interaction Sequence Avg.

AIO 48.6 48.0 63.2 50.6 47.5 50.8 49.2
ATP 49.3 48.6 65.0 51.5 50.6 52.8 51.7
VGT 55.0 52.2 64.0 55.0 - - -
MIST 56.6 54.6 66.9 57.1 55.5 54.2 54.9
VFC 53.3 57.6 72.8 58.6 - - -

CoVGT 57.4 58.8 69.3 60.0 - - -
HiTeA 58.3 62.4 75.6 63.1 - - -

InternVideo 58.5 62.5 75.8 63.2 62.7 65.6 64.4

BLIP-2 64.9 69.7 79.4 69.6 - - -
LSTP 66.5 72.8 81.2 72.1 - - -

InstructBLIP 70.5 71.5 79.8 72.5 - - -
SeViLa 69.4 74.2 81.3 73.8 63.7 70.4 67.1
GCG 72.6 74.2 80.7 74.6 - - -

Qwen-VL 68.4 71.3 80.6 71.9 60.4 65.5 63.0
Llava-Next 69.5 73.3 79.7 73.1 67.6 72.1 69.9

MSR-ViRQ(ours) 69.9 73.4 81.5 73.6 64.8 68.0 66.4
MSR-ViRL(ours) 72.2 74.6 80.9 74.9 68.9 73.1 71.0

grounding-based multimodal LLMs, on Temporal questions where temporal information is essen-
tial, demonstrating the superior temporal understanding ability of our method comparing to previous
grounding-based methods. Besides, for Interaction questions where spatial information is relatively
important, our method MSR-ViRL also presents the best performance. Comparing MSR-ViRQ and
MSR-ViRL with their own direct baseline that has been trained with uniformly sampled frames
in videos, we prove that our framework help enhance VideoQA abilities of multimodal LLMs by
providing them with most relevant grounded information, ignoring redundant information that may
impair understanding.

4.3 EXPERIMENTS ON GROUNDED VIDEOQA

To further confirm MSR-ViR is capable of more accurately grounding the relevant information
thus enhancing VideoQA ability of multimodal LLMs, we conducted experiments on the NExT-
GQA(Xiao et al., 2024) dataset. NExT-GQA not only contains the answer to the question, but
also presents a human-annotated ground-truth time span, indicating where the answer is derived
from the video, in other words, the most relevant time period to the question. The dataset requires
VideoQA models to provide ”evidence” of their answer, evaluating the grounding accuracy with
IoP(Intersection over Prediction) and IoU(Intersection over Union). It also measures Acc@GQA,
which is the proportion of questions that are correctly answered, and at the same time IoP between
predicted time span and ground-truth time span is larger than 0.5.

We compare our MSR-ViR framework with existing grounding-based methods and modular meth-
ods, together with vision-language models and multimodal LLMs which utilizes NG+ method in
(Xiao et al., 2024) for training. The results are shown in Table 2. Methods in the first part are
models implemented with NG+, while the second part includes grounding-based methods and the
third part contains modular methods. We de-emphasize methods implemented with significantly
larger LLMs(LLoVi with GPT-4 for example) for fair comparison. MSR-ViRQ achieves best results
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Table 2: Experiments on NExT-GQA. VGT, VIOLETv2, Temp[CLIP], FrozenBiLM, LSTP,
SeViLa, MSR-ViRQ(ours) and MSR-ViRL(ours) are finetuned on the training set. Acc@GQA is
the grounded QA accuracy defined in Xiao et al. (2024). Method in gray lines utilize significantly
larger LLMs(Palm-2 and GPT-4). Bold number denotes the best result excluding gray methods.

Method mIoP IoP
@0.3

IoP
@0.5 mIoU IoU

@0.3
IoU

@0.5 Acc@GQA

VGT 25.3 26.4 25.3 3.0 3.6 1.7 14.4
VIOLETv2 23.6 25.1 23.3 3.1 4.3 1.3 12.8
Temp[CLIP] 25.7 31.4 25.5 12.1 17.5 8.9 16.0
FrozenBiLM 24.2 28.5 23.7 9.6 13.5 6.1 17.5

LSTP - - - 19.9 23.3 11.2 -
LangRepo 20.3 - 20.0 8.7 - 6.0 11.2

SeViLa 29.5 34.7 22.9 21.7 29.2 13.8 16.6

LLoVi(Mistral-7B) 20.7 - 20.5 8.7 - 6.0 11.2
LLoVi(GPT-4) 37.3 - 36.9 20.0 - 15.3 24.3

MoReVQA(Palm-2) 37.8 - 37.6 19.7 - 15.4 39.6

MSR-ViRQ(ours) 30.0 39.8 25.0 22.8 33.0 16.4 18.5
MSR-ViRL(ours) 29.6 39.0 24.1 23.4 33.6 16.4 18.6

on mIoP, while MSR-ViRL achieves best results on mIoU, indicating that our method grounds the
temporal segment relevant to the question more precisely than existing grounding-based VideoQA
methods and modular VideoQA methods. The best result of Acc@GQA demonstrates that our
method can perform VideoQA tasks more effectively, while also providing more reasonable tempo-
ral evidence indicating which specific segment of the video the answer derives from.

4.4 ABLATION STUDY

As demonstrated in Table 3, to further validate the effectiveness of modules and designs in our MSR-
ViR framework, we conduct ablation study on NExT-QA and NExT-GQA dataset for MSR-ViRQ
concerning the following questions:

Is Alternate Self-reflection Training Strategy necessary? We remove the self-reflection training
process, only finetuning our Multimodal LLM without training the question parser LLM, and the
results are shown by w/o self-reflection in Table 3. The average accuracy on NExT-QA declines by
1.5, and accuracy on each subsets decreases to varying degrees. The grounded accuracy as well as
IoU of temporal grounding also decline as shown in experiments on NExT-GQA. This demonstrates
the necessity of our Alternate Self-reflection Training Strategy.

Is spatial localizer necessary in MoST-Grounding module? Most existing grounding-based
methods only consider temporal grounding, so we remove the spatial localizer including all small
modules in it, only providing our Multimodal LLM with temporal grounding results, denoted by w/o
spatial modules. The average accuracy on NExT-QA drops by 1.4, proving that spatial grounding
results provided by spatial localizer contain useful information for Multimodal LLM to answer the
question correctly.

Are our designs in training Multimodal LLM necessary? In 3.3, we introduce two designs for our
Multimodal LLM training: global representation and instruction prompts. We removed these two
designs separately and conducted tests on NExT-QA. The results show that the average accuracy on
NExT-QA has decreased to varying degrees for both, indicating that the two designs we proposed
for training multimodal LLMs are effective.

Furthermore, we visualize the reasoning process of MSR-ViR through an example, as demonstrated
in Figure 4. After self-reflection training, question parser generates a more reasonable policy accu-
rately grounding the question in the video, leading to a correct answer. More examples can be found
in appendix A.5.
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Table 3: Ablation study on NExT-QA and NExT-GQA. Bold number denotes the best result.

NExT-QA
Temporal Causal Descriptive Average

MSR-ViRQ 69.9 73.4 81.5 73.6
w/o self-reflection 67.2 72.5 80.5 72.1
w/o spatial modules 67.0 72.5 81.4 72.2
w/o instruction prompts 68.3 72.4 82.4 72.8
w/o global representation 66.9 70.1 78.0 70.4

NExT-GQA
Acc@QA Acc@GQA mIoU IoU@0.5

MSR-ViRQ 69.9 18.5 22.8 16.4
w/o self-reflection 68.3 17.9 22.2 15.7

Figure 4: Visualization of MSR-ViR reasoning process. (a) is the inference process of MSR-ViR
without self-reflection training. (b) is the inference process of MSR-ViR with self-reflection training.

5 CONCLUSION

In summary, we propose Modularized Self-Reflected Video Reasoner(MSR-ViR), a self-reflected
framework that integrates a Modularized Spatial-Temporal Grounding(MoST-Grounding) module
into a Multimodal LLM for interpretable VideoQA. Modularization policies generated by a question
parser LLM demonstrates clear paths from questions to answers, enhancing interpretability of our
framework, while spatial-temporal grounding results present visual evidence for answers. Through
the proposed alternate self-refection training process, policies are gradually refined, becoming more
reasonable. Extensive experiments demonstrate that MSR-ViR significantly improves VideoQA
capabilities of multimodal LLMs while grounding answers in videos more accurately. Future work
could explore further enhancements to the design of modular network and its execution efficiency.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
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A APPENDIX

Table 4: Illustration of our modules. Type is the type of the module, where T represents modules
in temporal localizer and S represents modules in spatial localizer. Vision-Language Model de-
notes the small vision-language model we use in the module. As for the input and output, V denotes
the input video, I denotes the video frame, TS denotes a time period, BBOX denotes a bounding
box, Qa denotes the action query, Qo denotes the object query, p is a preposition representing certain
temporal relationship and r is a word or phrase representing certain spatial relationship.

Module
Name Type Vision-Language

Model Input Ouput

DetectAct T UniVTG V , Qa TS
TemporalLocalize T - p, TS(in) TS(out)

TemporalBetween T - TS1, TS2 TS(out)

TemporalTruncate T - V , TS I1, I2, ...

LocateObj S YOLO-World I , Qo BBOX
SpatialLocalize S YOLO-World I , BBOX(in), r BBOX(out)

SpatialTruncate S - I , BBOX1, BBOX2, ... I(out)
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A.1 PROMPT FOR QUESTION PARSER LLM

We carefully design a prompt for our question parser LLM to generate policies from given questions
from in-context learning. The complete prompt is presented in Figure 5, 6, 7. We first inform the
question parser of some basic information and an introduction to the functions of each module.
Then we tell it the general template of the policy and several variants under special circumstances.
Finally, through a few examples, we teach the question parser how to generate a policy based on the
question.

Figure 5: Prompt for question parser LLM(Part I).
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Figure 6: Prompt for question parser LLM(Part II).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Prompt for question parser LLM(Part III).
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A.2 MODULE IMPLEMENTATION

All small modules in our MoST-Grounding module are listed in Table 4, the detailed implementation
of which are as follows:

DetectAct. Define the UniVTG model as MT , text encoder as Et, video encoder as Ev . V =
(v1, v2, ..., vT is an input video with T frames sampled at 1fps, and Qa is a query desribing an
action. We have:

TS = MT (Ev(V ), Et(Qa)) (7)
where TS = [ts, te] represents a time period.

TemporalLocalize. p is a preposition representing certain temporal relationship. TS(in) =

[t
(in)
s , t

(in)
e ] is an input time span. We have:

TS(out) =


TS(in), p ∈ {when,while, as}
[t
(in)
e ,min(2t

(in)
e − t

(in)
s , T )], p ∈ {after}

[max(0, 2t
(in)
s − t

(in)
e ), t

(in)
s ], p ∈ {before}

(8)

where TS(out) = [t
(out)
s , t

(out)
e ] is an output time span. T is the video duration.

TemporalBetween. Given two input time spans TS1 = [t1s, t1e] and TS2 = [t2s, t2e], we have:

TS(out) = [min(t1s, t2s),max(t1e, t2e)] (9)

where TS(out) = [t
(out)
s , t

(out)
e ] is an output time span.

TemporalTruncate. Given an input video V = (v1, v2, ..., vT ) and a time span TS = [ts, te],
define s = ⌊ts⌋, e = ⌈te⌉. We get I = (I1, I2, ...In), where:

Ii = v
(s+

(e−s)(i−1)
n−1 )

(10)

and n denotes the number of sampled frames.

LocateObj. Given the YOLO-World model MS , an input image I , a query of an object Qo, and
an image encoder EI together with a text encoder ET , we have:

BBOX = MS(EI(I), ET (Qo)) (11)

where BBOX = (x1, y1, x2, y2) is an output bounding box.

SpatialLocalize. Given an input image I , an input bounding box BBOX(in) =
(x1, y1, x2, y2) and a word or phrase representing certain spatial relationship r, we have:

BBOX(out) =



[max(0, 2x1 − x2), y1, x1, y2], p ∈ {left}
[x2, y1,min(w, 2x2 − x1), y2], p ∈ {right}
[x1, y2, x2,min(h, 2y2 − y1)], p ∈ Sdown

[x1,max(0, 2y1 − y2), x2, y1], p ∈ Sup

[max(0, 2x1 − x2),max(0, 2y1 − y2),

min(w, 2x2 − x1),min(h, 2y2 − y1)], p ∈ Ssurround

(12)

where Sdown = {bottom, down, below, under, beneath, sit on, stand on, lying on}, Sup =
{top, above, up, carry, lift, on}, Ssurround = {next to, beside, near, surround}. Particularly, if p ∈
{hold, touch, contact, take}, we have:

BBOX(out) = SpatialLocalize(I,BBOX(hand), ”surround”) (13)

where BBOX(hand) = LocateObj(I, ”hand”).

SpatialTruncate. Given an input image I and a list of bounding boxes BBOX1, BBOX2, ...
where BBOXi = (xi1, yi1, xi2, yi2), we have:

I(out) = RESIZEI(I[min
i

xi1,min
i

yi1,max
i

xi2,max
i

yi2]) (14)

where RESIZEI(I
′) is the operation that resizes an image I ′ into the shape of I .
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A.3 MULTIMODAL LLM INPUT FORMAT

The specific input of our multimodal LLM is illustrated in Figure 8 together with our instruction
prompt. Global representation tokens are encoded and aligned global video representation gv . Sim-
ilarly, temporal-grounded video tokens and spatial-grounded video tokens are encoded and aligned
video segments vs and bounding boxes bvs respectively. Special tokens glob, tp and sp are designed
to help the multimodal LLM understand different types of tokens.

Figure 8: Specific input of our multimodal LLM and the instruction prompt.

A.4 DETAILED ALTERNATE SELF-REFLECTION TRAINING STRATEGY

The detail of our Alternate Self-reflection Training Strategy is demonstrated in Algorithm 1.

A.5 MORE EXAMPLES

Here we present some more inference examples of our MSR-ViR framework.

Figure 9: MSR-ViR inference example 1.
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Figure 10: MSR-ViR inference example 2.

Algorithm 1 Alternate Self-reflection Training Strategy
1: Input: Question parser LLM Q, MoST-Grounding moduleM, temporal localizer Ft, spatial

localizer Fs, modules in temporal localizer {mt
i}4i=1, modules in spatial localizer {ms

i}3i=1,
multimodal LLM F , instruction prompt Pt, dataset D = {(vi, qi, yi}Ni=1, total training steps S,
gradient accumulate step s, alternate training period P

2: Initialize: Q,M, CACHE
3: Freeze:M, {mt

i}, {ms
i}, Q, Activate: F

4: for t = 1, . . . , S do
5: for j = 1, . . . , s do
6: i← ((t− 1)s+ j − 1)%N + 1, Prepare data (vi, qi, yi), Derive global representation gv .
7: Generate policy p = Q(qi)
8: Set Ft|p(·) = I

(
{mt

i}, p
)
(·),Fs|p(·) = I

(
{ms

i}, p
)
(·), derive ct, cs from p

9: M execution: vs, bvs =M(vi, ct, cs) = Fs

(
Ft(v, ct), cs

)
10: F forward propagation: ŷ(qi, vi) = F

(
Pt(qi, vs, bvs , gv)

)
11: Optimize F with loss: LCE in Equation (5)
12: Add (vi, qi, yi) to CACHE
13: end for
14: if t%P = 0 then
15: Freeze F , activate Q, initialize πθ = Q, πref = Q
16: for i = 1, . . . , sP do
17: Prepare data (vi, qi, yi)
18: Generate policies p1, p2 = Q(qi)
19: Forward propagation to get LCE1, LCE2 for p1, p2 respectively
20: if LCE1 < LCE2 then
21: pw ← p1, pl ← p2
22: else
23: pw ← p2, pl ← p1
24: end if
25: Optimize πθ with loss: LDPO in Equation (6)
26: end for
27: Q← πθ, clear CACHE, freeze Q, activate F
28: end if
29: end for
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A.6 FURTHER ABLATION STUDIES

In MoST-Grounding module, we utilize a small grounding model UniVTG as our temporal ground-
ing module. To demonstrate the effectiveness of UniVTG, we further conduct ablation study on
the choice of temporal grounding model. We utilize R2-Tuning(Liu et al., 2024) and Moment-
DETR(Lei et al., 2021) to replace UniVTG and test on NExT-GQA dataset, and the results are
shown in Table 5. MSR-ViRQ with UniVTG achieves the best results on NExT-GQA.

Table 5: Ablation study for temporal grounding models on NExT-GQA. This is the test result of
MSR-ViRQ with different temporal grounding models UniVTG, R2-Tuning and Moment-DETR.

Grounding Model Acc@QA Acc@GQA mIoP IoP@0.5 mIoU IoU@0.5
UniVTG 69.9 18.5 30.0 25.0 22.8 16.4
R2-Tuning 67.3 16.6 28.7 23.2 22.7 15.9

Moment-DETR 67.4 17.2 28.6 24.1 21.4 14.7

For further comparison between end-to-end Multimodal LLMs and our MSR-ViR, we provide their
parameter count and inference speed in Table 6. The inference speed is tested on two NVIDIA A100
GPUs. For MSR-ViRQ, the parameter size is: Qwen2(7B) + Qwen-VL(9.6B) + YOLO-World(48M)
+ UniVTG(41.3M) ≈ 16.6B.

Table 6: Parameter size and inference speed of Qwen-VL and MSR-ViRQ

Parameter Size Inference Speed
Qwen-VL 9.6B 1.29 qa paris / s

MSR-ViRQ(ours) 16.6B 0.21 qa pairs / s
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